COMPSCI 572.01 Final Project Report

A POOR MAN’S RETRIEVER FOR QA SYSTEMS:
NEW APPROACHES FOR COST EFFICIENT INFORMATION RETRIEVAL

Andrew Amore & Jose Pliego San Martin
Duke University
{andrew .amore, Jjose.pliego.san. martin}@duke .edu

ABSTRACT

Modern Question Answering (QA) systems consist of two components: readers
and retrievers. Retrievers reduce the passage search space for answer extraction
and limit the overall accuracy of QA methods. Conventional retrievers consume
large amounts of resources, reducing their viability to large corporations or well
funded institutions. In addition, some retrieval methods are prone to overfitting,
requiring an expensive retraining process to understand new document sources.
In this paper, we outline a methodology for building information retrieval systems
on a limited budget and perform feature enhancement using transfer learning.
Through several ablation studies we demonstrate that existing DPR approaches
are very sensitive to small changes in the problem domain, and introduce an
approach to potentially improve generalizability which outperforms the existing
DPR framework under one ablation. We also highlight a potential data quality
issue from a well-cited paper, which may call into question published accuracy
metrics and warrant additional review. Code for this analysis can be found on
GitHub.

1 INTRODUCTION

The goal of a question answering (QA) system is to produce accurate answers to a large variety of
input questions. Applications of QA are vast, from the generalizable Google search engine, to more
conventional customer service applications. General QA works by generating a probable answer
from a set of documents, called a corpus, in response to a question. Questions can be unknown in
advance and range in content and context from “Who directed the movie Forrest Gump?” to “What
is Islam?”, making this task challenging. Modern approaches consist of two components: readers
and retrievers. The first-stage retrieval process limits overall QA accuracy, as it filters information
for a later, more effective reader search. Because of this dependence, retrievers are vitally important
to overall QA systems and are the focus of this paper.

In section 2, we briefly review modern and classical approaches to information retrieval (IR) and dis-
cuss its main challenges. In section 3, we introduce our cost-effective augmentation method, using
a large-language-model (LLM) to transform initial document passages for more effective retriever
search. Section 4 includes more detail on our experiments and highlights performance differences
over a non-augmented baseline. In section 5, we analyze the results and comment on observed dif-
ferences after tweaking some components of the retriever pipeline. Finally, section 6 contains a brief
conclusion and reflection on the relevance of this work.

2 RELATED WORK

2.1 CLASSICAL RETRIEVAL METHODS

Prior to neural networks, the Probabilistic Relevance Framework (PRF), reviewed by Robertson &
Zaragoza (2009), developed many successful QA algorithms, like BM25, which compares ques-
tion and document passages by evaluating similar word frequencies. Passages with large amounts
of matching words, identical to the input question, are more likely to be retrieved. A benefit of

https://github.com/AndrewAmore/NLP-Retriever

COMPSCI 572.01 Final Project Report

PRF methods is they require no training and generalize well. However, they rely on exact word
matches between textual sources, which can fail to recognize synonyms. Many retrieval methods
are compared to BM25 as a performance benchmark.

2.2 MODERN RETRIEVAL METHODS

Most modern approaches to QA facilitate answer generation using a two-stage reader/retriever ar-
chitecture previously introduced. Transformer based readers, like BERT (Devlin et al., 2018), utilize
a neural network to perform a thorough answer search across document passages and have demon-
strated tremendous improvements over classical methods. Yang et al. (2019) were among the first to
demonstrate the benefits of a two-component system, combining BM25 retrieval with a BERT based
reader for QA, however, their error analysis suggests the overall QA accuracy is constrained by the
initial BM25 results. Adapting transformers to IR has been explored, however, these networks have
a memory limitation, from self-attention, which restricts the length of input passages (Das et al.,
2021) and makes an exhaustive search time-consuming. To address BM25 shortcomings, many
modern approaches use a distance metric, like cosine similarity, to perform an aggregated compari-
son between continuous representations of textual data to identify relevant passages. The summary
metric establishes a passage ranking and identifies the top-k most relevant passages to share with a
reader. We now introduce a few modern approaches.

Embedding Approaches. Classical and modern approaches diverge in the representation of doc-
ument corpora. Karpukhin et al. (2020) develop dense passage retrieval (DPR), which computes
passage relevance using vector representations derived from neural embeddings. DPR optimizes
these embeddings to maximize the inner-product distance between a question and the labeled an-
swer passage. Significant performance gains were reported over a BM25 baseline, however, labeled
data is required to fine-tune embeddings and training these methods relies on a sensitive batching
strategy to compute gradients, restricting the approach to small datasets (Izacard & Grave, 2020).

An alternative to passage based DPR, but also leveraging dense embeddings, is presented by Lewis
et al. (2021). Their method compares new queries against an augmented query set developed from
passages in the training data, which avoids the direct use of indexed passages. This approach greatly
reduces the number of embedding parameters, as generated queries are significantly shorter in length
than document passages, making it more memory efficient. Additionally, the augmented queries
undergo a filtering process to remove wrong or ambiguous entries and provides a reported metric
that can be used to assess the uncertainty in retrieved passages. Our proposed generation method is
very similar to Lewis et al. (2021), however, we utilize trained DPR embeddings from Karpukhin
et al. (2020) and append our generated questions to original passages for retrieval evaluation.

Closed-Book QA. More recently, there is growing literature around unsupervised QA systems which
disregard the reader/retriever architecture in favor of a single seq2seq model utilizing an encoder-
decoder architecture. These approaches avoid the use of labeled datasets and enable a greater num-
ber of training examples. Roberts et al. (2020) showed these models can achieve state-of-the-art
results, but are prohibitively large with billions of parameters that effectively memorize” question
answers. A timely example is ChatGPT, developed from the GPT-3 model, which demonstrates
an astounding ability to generate complex answers from user posed questions. To get a sense of
the unfathomable number of parameters, GPT-3 has 170,000,000,000 and the TS5 model used in our
analysis has “only” 220 million! However, there are substantial costs, to using these ginormous
models. In our experience, running just 30,000 passages through an inference pipeline can occupy a
single, energy-hungry, GPU for multiple days. Production models are often deployed across parallel
GPU architectures to speed up inference, but the energy use will be approximately the same. Re-
source usage (i.e. electricity) is an overlooked, but critical component to consider when deploying
QA systems.

Reranking. An even newer approach to IR combines the benefits of classical and modern methods
using two-stage retrieval. Sachan et al. (2022a) introduce a second-stage reranking algorithm that
can be applied to existing retrieval methods, like BM25. During reranking, a LLM computes con-
ditional likelihood estimates of an input query, given each initially retrieved passage, and reorders
them corresponding to the new likelihood estimates. This procedure displays state-of-the-art results
on full open domain QA, however, reordering large numbers of passages increases latency, as rele-

COMPSCI 572.01 Final Project Report

vance scoring is costly, and the full pipeline still depends on the initial retrieval process. Our work
involving a LLM was inspired by this analysis.

3 APPROACH

3.1 GENERALIZATION

QA systems receive questions in a variety of formats (yes/no, short-answer, etc.) which can con-
tribute to poor generalizability of DPR systems. Additionally, DPR methods utilize a batching based
training routine that requires a negative passage set, called in-batch negatives, for gradient compu-
tation. However, the majority of passages within a training corpus will be irrelevant, containing
information about vastly different subjects, and the variety of in-batch negative sets can alter the
update procedure of the network and dramatically alter the learned associations.

To address generalizability, we propose a data augmentation strategy for IR leveraging a LLM sim-
ilar to Lewis et al. (2021). We rationalize that each passage contains only enough knowledge to
answer a latent, but fixed set of questions, we define as a question answering capacity. If we can
uncover this latent factor, and directly provide it as an input, we may allow the model to infer more
general knowledge representations from an augmented feature set. In our method, before a passage
is included in the retrieval corpus, it undergoes feature enhancement to generate a set of candidate
questions, relevant to that passage, from a generative model fine-tuned from the Google T5-Base.
This newly created question set is appended to the original passage for inner-product computations
during retrieval. To test the effectiveness of generated questions, we concatenate 1, 2, and 3 consec-
utive passages together within the same document and define it as the concatenation level. For the
vast majority of passages across concatenation levels, appending the questions does not exceed the
maximum input length of the encoders. For the few that exceed this limit, we truncate at 512 tokens.

We hypothesize several potential benefits of our approach which may increase the viability of DPR
methods on larger corpora. If the generative set is representative of the question answering capacity,
we exhaust the answering potential of each passage, allowing for more informed comparisons using
the augmented feature set. Second, by including text formatted as questions we allow the model
to compare information in similar formats: question to (passage, question) instead of question to
passage like original DPR. Lastly, generated questions may provide a “memory-bank’ of commonly
asked questions, similar to an FAQ page, that could provide a roadmap for a model to develop
”shortcuts” linking input questions to augmented variations.

3.2 RESOURCE INTENSIVE

To curate a labeled QA dataset, a manual annotator, posed with a question, must identify the correct
answer passage from an internet archive, often Wikipedia. This process is time-consuming, error-
prone, and can limit the number of training examples which encourages overfitting. In addition, both
classical and modern methods utilize an in-memory document index to facilitate efficient passage
retrieval, as the sheer number of comparisons make computations either memory or time intensive.
These indexes use substantial amounts of expensive RAM, with corpora that can number in the
billions. For example, the 2018 Wikipedia corpus from this analysis consists of over 20 million
passages and requires over 5TBs of memory to index at once, which can cost upwards of $20,000.

To address challenges, we elect to use the trained DPR retriever' developed by Karpukhin et al.
(2020) with our augmented passages in an attempt to minimize the dependence on labeled QA data.
Resource constraints were a big factor in our analysis. In our experiments, feeding the tokenized
passages through the BERT encoder was a significant computational bottleneck and our limited
budget made it impractical to store both encoder parameters and dense representations of the full
corpus. To address resource limitations, we take a random sample? to reduce the number of passages
and work around memory constraints during the encoding stage by feeding passages through the
encoder in batches of 20. While taking a random sample prohibits our ability to draw conclusions
from the full corpora, we believe the sample is large enough to warrant consideration for larger
experiments.

'Rationale is discussed in 4.2
Discussed in more detail in 4.1.2

COMPSCI 572.01 Final Project Report

4 EXPERIMENTS

We introduce the data used for experiments, highlight data quality concerns and discuss basic model
design. We focus our analysis to a subset of the final retrieval corpus to alleviate resource constraints.

4.1 DATASETS AND EVALUATION?

Wikipedia. To represent a retrieval corpus, we download the English Wikipedia dump of December
2018 from the official DPR repository, emulating a number of cited work*. The dataset archives
all published Wikipedia articles (documents) from the time period and consists of three fields: id
(unique integer), title, and passage. Each document is divided into a series of 100-word passages and
includes the document title prepended to the first passage. Documents can be reconstructed in the
correct order using the unique id. The raw data was uploaded to a BigQuery database for modeling.

Natural Questions (NQ). For retrieval evaluation, we include labeled question/answer pairs from the
Google NQ benchmark (Kwiatkowski et al., 2019). It consists of real queries, posed by users to the
Google search engine, and corresponding Wikipedia answer passages. The document information
provided by Google is raw HTML and would require extensive data cleaning for language modeling.
The BEIR Benchmark (Thakur et al., 2021) provides a parsed version of the original dataset, which
we downloaded from the official mirror. BEIR includes the original queries, a subset of Wikipedia
articles used for answer identification, and lookup tables linking queries to corresponding answer
passages. The format of the Wikipedia documents follows a similar convention to the DPR dataset,
including a unique passage identifier, document title and segmented passage entries. Raw files from
both NQ-Test and NQ-Train were uploaded to BigQuery for evaluation.

4.1.1 DATA QUALITY ISSUES

Duplicate Data. Both Wikipedia document sources have duplicate passages, defined as observations
with distinct identifiers, but identical titles and text contents. Passages may repeat throughout a
document, however, given the considerable passage length, this is unlikely. Table | presents a
summary by datasource’ and reveals NQ-Train is substantially more “duplicated” than other sources.

Data Initial Passages Distinct Passages Percent Duplicated
Wikipedia DPR 21,015,324 20,975,394 < 1%
NQ-Train (BEIR) 18,060,996 7,332,438 59%
NQ-Test (BEIR) 2,681,468 2,670,337 < 1%

Table 1: Distinct and total record counts by data source.

Failing to remove duplicate entries can effect retriever accuracy and increase memory usage. To
address duplication, we assume it is the result of a processing routine which inaccurately includes
duplicated passages at the end of each document and opt to keep passage copies with the lowest
unique identifier. We perform the removal process at different concatenation levels, to avoid remov-
ing consequent passages’, as we suspect a more random duplication pattern.

Missing Wikipedia Answer Passages. The DPR Wikipedia corpus consists of over 3 million docu-
ments, but, when compared to Wikipedia data in BEIR, appears to exclude over 10% of answer doc-
uments based on a distinct title comparison. Table 2 shows the number of document articles in each
BEIR corpus and displays a substantial number of missing DPR entries in both BEIR datasets’. It’s
plausible some Wikipedia articles in the NQ dataset may not have existed in December 2018, when
the DPR data was harvested. Kwiatkowski et al. (2019) details the creation of the Natural Questions
benchmark, but does not specify an annotation time period. A closer inspection of missing DPR
titles suggests documents listing information may have been inadvertently excluded®. Missing data

3See appendix A.1 for more detailed information

“Both Sachan et al. (2022a) and Sachan et al. (2022b) utilized the DPR dataset
5A.2 presents an example with more information

8Section 5 details information on concatenation level

"See A.3 for more detailed information on how table metrics were calculated
8See Table 6 for a few examples

https://github.com/facebookresearch/DPR
https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/

COMPSCI 572.01 Final Project Report

in the retrieval corpus is a problem, as it’s impossible to fetch nonexistent answer passages. Several
cited papers publish top-k accuracy on the NQ benchmark utilizing the DPR corpus, but don’t spec-
ify a missing passage issue and may be biased as a result. To determine if any remediation was taken,
we examined the codebase from one such paper. Our evaluation suggests retrieval accuracies were
computed by identifying a matching answer span in retrieved passages, which may be problematic
as passages may contain the right span, but be completely irrelevant to the query. However, due to
the excluded answer passages, it’s more likely published results are biased downwards, as a subset of
queries were most likely recorded as inaccurate, failed retrieval cases, suggesting accuracies might
be even higher! To address missing data elements in our analysis, we combine unique document
information from both DPR and BEIR sources using the article titles. In cases where documents
exist in both sources, we elect to use the deduplicated BEIR Wikipedia data.

Source Total Documents ~ Missing DPR Documents Percent Missing
NQ-Train 56,227 6,949 ~12%
NQ-Test 108,593 14,315 ~13%

Table 2: Number of missing document articles from the DPR Wikipedia document corpus.

4.1.2 FINAL DATASET DETAILS

An augmentation step processes each passage for question generation, which is time intensive on a
single GPU’. In addition, the retriever requires large amounts of memory during encoding, which
restricts the total number of passages we can consider to ~250,000. To reduce the computational
burden we need to reduce the size of the retrieval corpus. First, 20% of the passage/answer pairs were
randomly drawn from BEIR NQ-Train. Based on the answer documents in this sample, we randomly
select five passages from each corresponding document to add similar contextual information as
potential sources of ’noise”. To complete the corpus, we randomly sample from the full Wikipedia
document corpus until we reach approximately 250,000 passages. All selected answer passages
undergo a question generation step. To address augmentation differences between answer passages
and the rest of the corpus sample, we randomly select a subset of unaugmented passages from the
newly created corpus for augmentation. Passages not selected were included without adjustment.
Table 3 displays summary metrics from the sampling procedure at concatenation level 1'°.

Stage Source Size Sample Sample % Augmentations

1 Query Answer Passages 132,803 26,634 20% 26,634
(NQ-Train)
Answer Document Passages

2 Stage 1 Sample 2,613,082 84,040 32% 10,734
(NQ-Train)

3 Full Corpus 19,844,404 149,008 0.75% 15,789
(DPR Data)
Total 259,682 53,157

Table 3: Sampling details for the final corpus at concatenation level 1.

4.2 MODEL AND TRAINING DETAILS !

Question Generator (QG). To generate potential questions for each document passage, a generative
LLM model is used. Instead of tuning from scratch, we leverage an existing resource on the Hugging
Face Hub (Montgomerie, 2020b) which allows us to specify the number of generated questions, 7).
The QG was tuned from the T5-Base (Raffel et al., 2019) on 200,000 examples in SQuAD, CoQA,
and MSMARCO datasets. We made several modifications to the existing codebase to improve gen-
eration accuracy and reduce inference throughput'?. To develop a passage specific question set,

°See B.1 for throughput details

10See Section 5 Question Generation for other concatenation level summaries
"Unless explicitly stated, all analysis was conducted on the base Google Colab GPU
12See B.1 for throughput information and B.2 for specific enhancements/limitations

https://huggingface.co/models
https://huggingface.co/models
https://rajpurkar.github.io/SQuAD-explorer/
https://stanfordnlp.github.io/coqa/
https://microsoft.github.io/msmarco/

COMPSCI 572.01 Final Project Report

the QG attempts to generate 1 questions, however, passages lacking a formal sentence structure or
enough contextual detail result in fewer generated questions'. We tested n € {25,50}, but realized
many passages do not contain enough information for 50 questions. Higher levels of 7 also reduce
the inference throughput and for our experiments we set = 25. After generation, each question is
ordered by passage relevance score, computed from a separate BERT model (Montgomerie, 2020a)
which we did not adjust. The generated questions are delimited and added to the database.

Information Retrieval Model. The information retrieval stage is based on the work by Karpukhin
et al. (2020). Given a set of question-passage pairs (g, p), both are fed through pre-trained BERT
tokenizers to get their long tensor representations and passed through two independent pre-trained
BERT encoders (Facebook, 2020b;a). At this stage, the encoded outputs are float tensors containing
dense representations of the initial text inputs. Once encoding of all document passages is complete,
the vector representations are indexed for efficient max-inner product search. At inference, a new
query is tokenized and fed through the question encoder to get its vector representation ¢*. The
similarity between the input question representation and a passage is computed as an inner product
(q¢*, p). The top-k indexed passages are retrieved using the FAISS algorithm (Johnson et al., 2017).

It is worth mentioning that encoders and tokenizers were not fine-tuned for our specific modifica-
tions. The main reason we did not fine-tune is due to the lack of computational resources in our
current setup. Saving relevant tensors in-memory, a necessary step for fine-tuning, meant we could
only work with passages in batches of five, which we further detail in section 5. This limitation
translated into each query having a very small number of in-batch negatives, hindering the training
procedure. When we attempted to fine-tune, iterating for a single epoch (more than 5,000 batches)
took several hours: an unfeasible amount of time to run a full training schedule using limited GPU
resources. We decided it was better for our experiments to work with the trained model and a larger
dataset, rather than fine-tuning on a much smaller sample. Also, since the main objective of this
work is experimentation and not replication, leveraging the already trained models meant we could
run more experiments instead of spending time and computational resources fine-tuning.

4.3 RESULTS
4.3.1 INFORMATION RETRIEVAL ACCURACY

We ran several experiments, changing one aspect of the retriever pipeline to compare performance
which included: evaluating NQ-Train queries without additional "noise” passages, adding a random
sample of 250,000 “noise” passages from the Wikipedia corpus, and adding a random sample of
about 250,000 hard "noise” passages from the Wikipedia corpus. Hard noise differs in that passages
come from both the Wikipedia corpus and from answer documents in NQ-Train for each sampled
query. We assessed retrieval accuracy for these configurations under three concatenation levels
and compared performance of the augmented passage set (generated questions appended) against
accuracy of the original passages. We also compared two different question generation mechanisms,
greedy decoding and beam search. Additionally, we compared the performance of the retriever
when the title of the passage is not appended to the passage before encoding. This ablation was
tested with and without beam search questions, with and without the hard Wikipedia passages, only
for concatenation level 3. Finally, all the configurations were evaluated for top-k passages retrieved
with k& € {10, 20, 50, 100}. The main results are summarised in table 4 with the accuracy averaged
across k. A deep-dive for different values of k is presented in section 5.

5 ANALYSIS

Computation Time. While passing passages through the encoder and indexing, some interesting
computational tradeoffs were faced. The indexing using FAISS can take batched tensors, and the
larger the batch size, the faster the indexes are built. However, the passage encoder quickly exceeds
RAM memory, even in large Colab machines, so a balance had to be struck between fast indexing
and manageable batch sizes. Our first approach was to save tensors containing the passage em-
beddings to storage, and later reload them into the index in a different session. This was not an
efficient approach because saving and loading all the tensors in-memory quickly saturated RAM.

13See B.3 for passage specific examples

COMPSCI 572.01 Final Project Report

Concatenation Questions Question ~ Wikipedia ”Hard” Appended Mean
Level Appended Types Passages Passages Title Accuracy (%)
1 No Beam 256,784 Yes Yes 77.57
1 Yes Beam 256,784 Yes Yes 70.30
2 No Beam 259,763 Yes Yes 75.74
2 Yes Beam 259,763 Yes Yes 71.36
3 No Beam 0 - No 78.73
3 Yes Beam 0 - No 74.33
3 No Beam 0 - Yes 89.93
3 Yes Beam 0 - Yes 83.89
3 No Greedy 0 - Yes §89.93
3 Yes Greedy 0 - Yes 85.08
3 No Beam 191,931 Yes No 59.15
3 Yes Beam 191,931 Yes No 62.52
3 No Beam 191,931 Yes Yes 73.82
3 Yes Beam 191,931 Yes Yes 72.08
3 No Beam 250,000 No Yes 84.03
3 Yes Beam 250,000 No Yes 80.21
3 No Greedy 250,000 No Yes 83.86
3 Yes Greedy 250,000 No Yes 69.93

Table 4: Summary of retrieval experiments.

At this stage, we were only able to encode and save passages in batches of 5. Later, we switched
our approach so that passages were retrieved, tokenized, encoded, and added to the index all in one
function call. This meant that we no longer had to store the tensors containing the passage embed-
dings, only the updated index at each step. With this approach, we managed to feed the passages in
batches of 20. Building an index for the passages in NQ-Train took a little under 20 minutes using
the regular Colab GPU and a high-RAM session. It is important to mention that we were not able to
use the Premium GPUs offered by Colab because the version of the FAISS package available in PIP
does not support these GPUs, and we found that installing packages using Conda in Colab sessions
to be slow and unstable.

Finally, to embed the Wikipedia passages, we ran some experiments and saw that we could only work
with about 250,000 passages before exhausting our computational resources. In order to add these
passages to the NQ-Train index, we load the index locally, move it to GPU, tokenize and encode
the Wikipedia passages, and add them to the index. As before, we managed to do this indexing
step using batches of size 20. In total, adding the ~250,000 passages to each index takes around
2 hours and 45 minutes. Our approach takes advantage of the fact that the same passages belong
to different indexes (each for one of our pipeline configurations), and only performs the encoding
step one time'*. To make a fair comparison, we also generate questions for the Wikipedia passages
and append them. However, due to time and computational constraints, we are not able to generate
questions for the 250,000 passages at each concatenation level.

Question Generation. Several factors govern question generation. Many passages lack a coherent
sentence structure, affecting the generation quality as the QG is not able to comprehend poorly
structured text. Passage length determines the number of generated questions, as longer passages
contain more information and reduce the impact of incoherent text, however, may affect the question
topics, as shorter passages may direct the QG to more targeted information about relevant topics. To
investigate passage length effects on retrieval accuracy we compare three concatenation levels: 1, 2,
and 3. By default, our retrieval corpus divides documents into a series of passages at level 1. For
levels 2 and 3, we combine consecutive passages, using the unique document identifier, to collapse
two and three passages together within the same document. Passages that could not be combined
due to an even or odd number of passages were left as is.

Retriever Performance. Some of the main takeaways from table 4 are that retriever performance
is greatly reduced when adding “hard” noise passages, about 10 points for the retriever without
questions appended and 8 points for the retriever with questions appended. These “hard” passages
come from articles which contain answer passages, so the contents are similar and the retriever

1See C for small code examples

COMPSCI 572.01 Final Project Report

Questions Appended e No Yes
1 2 3
L]
L]
[]
L]
80% o
)
oy .
Q °
3 700
g 70%
< '
]
60%
10 20 50 100 10 20 50 100 10 20 50 100
K

Figure 1: Top-k retriever accuracy for concatenation levels 1, 2, and 3 (k € {10, 20, 50, 100}).

fails to capture the correct passage more often. It is also interesting to compare the greedy and beam
search question generation. When no noise passages are included, the retriever with greedy decoding
performs slightly better than the retriever with beam search. However, when random noise passages
are included, there is a big improvement of more than 10 points when switching to beam decoding.
The initial performance difference may be attributed to the duplicating question phenomena more
prevelant under greedy decoding which provides additional, repeated keywords for the retriever to
match on, however, this matching strategy breaks down under additional noise.

It is also very interesting to note that the performance of the retriever dramatically drops when we
remove the article title from the corpus passages. In this case, our method of appending beam search
questions performs better than the original retriever. This suggests the retriever is overly reliant on
some features which contributes to poor generalizabilty of DPR methods. An interesting idea to
explore in the future could look to quantify and/or minimize the dependence on any one passage
feature. Overall and perhaps obviously, we note retrieval performance is very good at performing
the task under original conditions, but slight adjustments may yield big drops in accuracy.

Finally, we compare the performance of retrievers when changing the concatenation level. Figure 1
shows the accuracy for the different values of £ when adding hard” noise passages and appending
the titles to the passage. We see that the performance of the retrievers without questions appended
decreases as the concatenation level increases, showing once again that the retrievers are signifi-
cantly better at performing only the task they were trained to do. The difference in performance
is smaller as k increases. It is also interesting to note that the difference in performance between
appending and not appending questions is smaller as the concatenation level increases, and perfor-
mance is better for higher concatenation levels in the case when questions are passage appended. It
may be interesting to explore how the performance gap changes at higher concatenation levels and
determine if the augmented method ever surpasses the baseline. These improvements also suggest a
potential benefit from fine-tuning the passage encoder with the augmented data under our approach.

6 CONCLUSION

In this analysis we introduce an IR method leveraging the concatenation of a generated question set
to original document passages. Our results, including the decreasing performance gap, suggest a
promising approach. Our variety of experiments, consisting of different ablations on the retriever,
show that IR tends to perform worse, often significantly, when the task varies from the original
implementation, confirming a lack of robustness in DPR strategies. Future work should be directed
at scaling up this analysis on a full corpus to reduce variability and spent investigating performance
benefits of fine-tuning.

AUTHOR CONTRIBUTIONS

Both members contributed equally on this analysis. Andrew curated the dataset and developed the
QG pipeline. Jose worked on the retrieval process and evaluation metrics.

COMPSCI 572.01 Final Project Report

REFERENCES

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya Godbole, Ethan Perez, Jay-Yoon Lee, Lizhen
Tan, Lazaros Polymenakos, and Andrew McCallum. Case-based reasoning for natural language
queries over knowledge bases, 2021. URL https://arxiv.org/abs/2104.08762.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2018. URL https://arxiv.org/
abs/1810.048065.

Facebook. facebook/dpr-ctx_encoder-single-ng-base. https://huggingface.co/
facebook/dpr—-ctx_encoder—-single-ng-base, 2020a. Accessed: 2022-12-01.

Facebook. facebook/dpr-question_encoder-single-ng-base. https://huggingface.co/
facebook/dpr—-question_encoder-single-ng-base, 2020b. Accessed: 2022-12-
01.

Gautier Izacard and Edouard Grave. Distilling knowledge from reader to retriever for question
answering, 2020. URL https://arxiv.org/abs/2012.04584.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus, 2017.
URL https://arxiv.org/abs/1702.08734.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering, 2020. URL
https://arxiv.org/abs/2004.04906.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Al-
berti, Danielle Epstein, Illia Polosukhin, Matthew Kelcey, Jacob Devlin, Kenton Lee, Kristina N.
Toutanova, Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural questions: a benchmark for question answering research. Transactions of the
Association of Computational Linguistics, 2019.

Patrick Lewis, Yuxiang Wu, Linqging Liu, Pasquale Minervini, Heinrich Kiittler, Aleksandra Piktus,
Pontus Stenetorp, and Sebastian Riedel. Paq: 65 million probably-asked questions and what you
can do with them, 2021. URL https://arxiv.org/abs/2102.07033.

Adam Montgomerie. iarfmoose/bert-base-cased-qa-evaluator. https://huggingface.co/
iarfmoose/bert-base-cased-ga—-evaluator, 2020a. Accessed: 2022-12-01.

Adam Montgomerie. iarfmoose/t5-base-question-generator. https://huggingface.co/
iarfmoose/t5-base—question—generator, 2020b. Accessed: 2022-12-01.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer, 2019. URL https://arxiv.org/abs/1910.10683.

Adam Roberts, Colin Raffel, and Noam Shazeer. How much knowledge can you pack into the
parameters of a language model?, 2020. URL https://arxiv.org/abs/2002.08910.

Stephen Robertson and Hugo Zaragoza. The probabilistic relevance framework: Bm?25 and beyond.
Found. Trends Inf. Retr., 3(4):333-389, apr 2009. ISSN 1554-0669. doi: 10.1561/1500000019.
URL https://doi.org/10.1561/15000000109.

Devendra Singh Sachan, Mike Lewis, Mandar Joshi, Armen Aghajanyan, Wen-tau Yih, Joelle
Pineau, and Luke Zettlemoyer. Improving passage retrieval with zero-shot question generation,
2022a. URL https://arxiv.org/abs/2204.07496.

Devendra Singh Sachan, Mike Lewis, Dani Yogatama, Luke Zettlemoyer, Joelle Pineau, and Manzil
Zaheer. Questions are all you need to train a dense passage retriever, 2022b. URL https:
//arxiv.org/abs/2206.10658.

Nandan Thakur, Nils Reimers, Andreas Riicklé, Abhishek Srivastava, and Iryna Gurevych. Beir:
A heterogenous benchmark for zero-shot evaluation of information retrieval models, 2021. URL
https://arxiv.org/abs/2104.08663.

https://arxiv.org/abs/2104.08762
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base
https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base
https://huggingface.co/facebook/dpr-question_encoder-single-nq-base
https://huggingface.co/facebook/dpr-question_encoder-single-nq-base
https://arxiv.org/abs/2012.04584
https://arxiv.org/abs/1702.08734
https://arxiv.org/abs/2004.04906
https://arxiv.org/abs/2102.07033
https://huggingface.co/iarfmoose/bert-base-cased-qa-evaluator
https://huggingface.co/iarfmoose/bert-base-cased-qa-evaluator
https://huggingface.co/iarfmoose/t5-base-question-generator
https://huggingface.co/iarfmoose/t5-base-question-generator
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2002.08910
https://doi.org/10.1561/1500000019
https://arxiv.org/abs/2204.07496
https://arxiv.org/abs/2206.10658
https://arxiv.org/abs/2206.10658
https://arxiv.org/abs/2104.08663

COMPSCI 572.01 Final Project Report

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen Tan, Kun Xiong, Ming Li, and Jimmy Lin.
End-to-end open-domain question answering with. In Proceedings of the 2019 Conference of
the North. Association for Computational Linguistics, 2019. doi: 10.18653/v1/n19-4013. URL
https://doi.org/10.18653%2Fv1%2Fn19-4013.

10

https://doi.org/10.18653%2Fv1%2Fn19-4013

COMPSCI 572.01 Final Project Report

A DATABASE INFORMATION AND SQL SCRIPTS FOR COMPUTATION

A.1 DATASET INFORMATION

Both BEIR datasets have identical formats. The source mirror provides jsonl files for corpus (pas-
sages) and queries with query answers provided as a tsv file. The data was manually loaded into
a GCP cloud storage bucket and uploaded to BigQuery. The resulting schema for NQ-train and
NQ-test is shown in figure 2 and was stored in separate databases.

BEIR Raw Schema

query

PK | query_id Nﬁ
anIwWer
text
query_id
| /_

passage corpus_id

score
PK | corpus id

title:

text

Figure 2: BEIR schema.

A.2 DUPLICATED BEIR DATA

Table 5 shows one example of a duplicated passage in the BEIR NQ training benchmark with orig-
inal data fields. The raw corpus includes four copies of an identical answer passage with different
passage ids, yet only one is marked correct to the NQ query “when’s the next resident evil coming
out”.

Corpus ID Title Text

doc532610 Resident Evil (film series) In May 2017, Constantin chairman Martin
Moszkowicz said that a reboot of the film series
is in development.[30] James Wan will
produce the reboot with a script by Greg Russo.
[31]

doc631341 Resident Evil (film series) In May 2017, Constantin chairman Martin
Moszkowicz said that a reboot of the film series
is in development.[30] James Wan will
produce the reboot with a script by Greg Russo.
[31]

doc14251312 Resident Evil (film series) In May 2017, Constantin chairman Martin
Moszkowicz said that a reboot of the film series
is in development.[30] James Wan will
produce the reboot with a script by Greg Russo.
[31]

doc14929455 Resident Evil (film series) In May 2017, Constantin chairman Martin
Moszkowicz said that a reboot of the film series
is in development.[30] James Wan will
produce the reboot with a script by Greg Russo.
[31]

Table 5: A duplicate example in the BEIR benchmark.

To identify these issues, a simple SQL statement selecting distinct title and text fields was used. To
compute the summary metrics, we aggregate by title, text and count the number of rows.

11

COMPSCI 572.01 Final Project Report

select title , text, count(x) as cnt
from beir_nq_train.train_.document_lookup
group by title , text;

To remediate duplicates at different concatenation levels w, we assume the minimum passage id at
the first position in the corpus_id_array to correspond with the correct entry. For w = 2, the
following query removes duplicate entries for identical concatenations.

select doc_id, title , text, corpus_id_array
from (
select A.doc_id, A.title , A.doc_text as text,
A.corpus_id_array ,
row_number () over(partition by A.doc_id, A.title ,
A.doc_text order by
cast(substr(A.corpus_id_array[offset (0)], 4)
as INT64)) as dupes
from ‘beir_nq-train.stg_nq-train_.documents_2 ‘° A
) A
where dupes = 1;

A.3 MISSING ANSWER PASSAGES

Table 6 displays a sample of missing article titles in the DPR dataset that are marked as answering the
displayed NQ query. We display only one question from each article for brevity, but some missing
articles are referenced across multiple queries.

Missing Article Title NQ-Train Query

List of Interstate Highways in New York what are the major highways in new york

List of Green Bay Packers players who are all the players on the green bay packers
List of tallest buildings what is the talkest building in the world
Smoking age whats the legal age to smoke in usa

Malaysian general election, 2018 who won the election in malaysia in 2018

Table 6: A subset of missing article titles with the corresponding NQ-Train query from BEIR.

To identify missing articles in DPR, a more complex SQL query is needed. To reduce parsing errors,
titles in both sources are converted to lowercase and strip of spaces. We then compare distinct titles
in BEIR to DPR with a join.

select A.title from (
select distinct title from beir_nq_train.train_document_lookup

) A
left join ‘nlp_final_project.wikipedia.dump * B
on REGEXP REPLACE(lower (A. title), ~ 7, ’’) =
REGEXP REPLACE (lower (B. title), * ’,)

where B. title is null;

12

COMPSCI 572.01 Final Project Report

A.4 FINAL DATASET DETAILS - ADDITIONAL CONCATENATION LEVELS

The encoder is memory constrained and can only handle tables that occupy roughly 300MB of
storage, which equates to roughly 250,000 passages at reduced concatenation levels. However, at
level 3 we had to reduce the number of randomly sampled Wikipedia passages to fit under the
memory limit.

Stage Source Size Sample Sample % Augmentations

1 Query Answer Passages 132,803 26,634 20% 26,634
(NQ-Train)
Answer Document Passages

2 Stage 1 Sample 2,034,323 83,795 4.1% 10,083
(NQ-Train)

3 Full Corpus 10,584,679 151,526 1.4% 16,341
(DPR Data)
Total 261,955 53,058

Table 7: Sampling details for concatenation level 2.

Stage Source Size Sample Sample % Augmentations

1 Query Answer Passages 132,803 26,634 20% 26,634
(NQ-Train)
Answer Document Passages

2 Stage 1 Sample 1,647,696 82,535 5.0% 11,099
(NQ-Train)

3 Full Corpus 7,594,345 83,677 1.1% 15,390
(DPR Data)
Total 192,846 53,123

Table 8: Sampling details for concatenation level 3.

13

COMPSCI 572.01 Final Project Report

B MODEL DETAILS

B.1 QUESTION GENERATION THROUGHPUT

Table 9 shows the record throughput for the QG model on the 26,634 NQ-Train answer passage
sample under different conditions. The "QG Optimized” column denotes whether or not the QG
utilized speed enhancements detailed in B.2. To facilitate efficient generation, as many as five GPUs
were utilized in parallel: three Colab sessions and two local machines. Note the reported ”Sample
Generation Time” corresponds to running the inference pipeline in only a single session.

Concatenation Level QG Optimized Throughput Sample Generation Time
(seconds per passage) (hours)
1 True 542 40.09
2 True 8.10 59.94
3 True 10.64 78.70
3 False 13.17 97.41

Table 9: Question generation throughput.

B.2 QUESTION GENERATOR MODIFICATIONS

Several modifications to the default QG codebase were made. First, to improve the coherence of
output questions, the decoding strategy was altered to use beam search (beams = 4) instead of the
initial greedy approach. During our experimentation, we also noticed large amounts of redundant
questions within the same passage. To address this we introduced a temperature parameter (T=2) to
introduce more variability in the sampling distribution, which made outputs more varied. To improve
inference speed, we adjusted the default data loader to make use of batching strategy instead of a
single record configuration and switched the tokenizer to a “fast” version from Hugging Face.

Lastly, we realized the default generation routine processes passages sentence by sentence, but the
original logic was splitting passages by searching only for punctuation symbols. Many passages
contain abbreviations like "Mr.” or ”Mrs.”, which affected this parsing strategy. To solve this, we
rewrote the splitting scheme using more robust regex and added additional functionality to strip out
pesky Wikipedia citations like ”[5]” of ”’[12]” that occupy valuable GPU memory.

We acknowledge the sentence by sentence inference scheme is a potential limitation in the current
model architecture that limits the information the QG can reference when performing inference.
Currently, the QG generates only one potential question per passage sentence, but this can be ad-
justed. In future work we plan to alter the number of sentences the QG observes within one forward
pass and adjust the number of inferred questions it generates to assess the impact on downstream
retrieval accuracy.

14

COMPSCI 572.01 Final Project Report

B.3 QUESTION GENERATION EXAMPLES

Figure 3 displays an answer passage and the QG outputs under different decoding schemes. The
original NQ query was "in the life of pi who do the animals represent”. Note the amount of question
duplication under the ”Greedy” decoding scheme and how “Beam Search + Temperature” reduces
instances of duplication.

Contents

Passage

Greedy

Beam 4
Temperature

Two hundred and twenty-seven days after the ship’s sinking, the lifeboat washes onto a
beach in Mexico, after which Richard Parker disappears into the nearby jungle without
looking back, leaving Pi heartbroken at the abrupt farewell. The third part of the novel
deseribes a conversation between Pi and two officials from the Japanese Ministry of
Transport, who are conducting an inquiry into the shipwreck. They meet him at the
hospital in Mexico where he is recovering. Pi tells them his tale, but the officials reject it
as unbelievable. Pi then offers them a second story in which he is adrift on a lifeboat not
with zoo animals, but with the ship’s cook, a Taiwanese sailor with a broken leg, and his
own mother. The cook amputates the sailor’s leg for use as fishing bait, then kills the
sailor himself as well as Pi’s mother for food, and soon he is killed by Pi, who dines on
him. The investigators note parallels between the two stories. They soon conclude that
the hyena symbolizes the cook, the zebra the sailor, the orangutan Pi’s mother, and the
tiger represents Pi. Pi points out that neither story can be proven and neither explains
the cause of the shipwreck, so he asks the officials which story they prefer: the one
without animals or the one with animals. They eventually choose the story with the
animals. Pi thanks them and says: “And so it goes with God.” The investigators then
leave and file a report.
Where is he recovering [SEP] How long after the ship’s sinking [SEP| What does he say
to the investigators [SEP] how long after the ship’s sinking [SEP] How many parts of the
novel are there [SEP] What is the symbol of the hyena [SEP] Who is the captain of the
lifeboat [SEP] What is the story’s purpose [SEP] What is the story of the shipwreck
[SEP] What story is the author’s favorite [SEP] Where is Pi [SEP] How does the story
end [SEP] What is the story about [SEP] Who kills the sailor [SEP] Who kills the sailor
[SEP] Where is he in the hospital [SEP] Where did the lifeboat sink [SEP] What is the
story about [SEP] What is the story about [SEP] What is the story about [SEP] Which
story is the most likely to be the one without animals [SEP] What is the story about
[SEP] What is the story about [SEP] Who is the Japanese Ministry of Transport
How does the investigators conclude that the hyena represents the cook [SEP] How long
after the ship’s sinking did the lifeboat disappear [SEP] How does he explain the cause of
the shipwreck [SEP] How long after the ship’s sinking [SEP| Who is respousible for the
shipwreck [SEP] Who is the captain of the lifeboat [SEP|] Where is he recovering [SEP]
Who decides the story with the animals [SEP] How do the investigators note parallels
between the two stories [SEP] How does he tell them his story [SEP] Where is he
recovering [SEP] Who represents the hyena, the zebra the sailor, [SEP] What does he say
to the investigators [SEP] Who kills the sailor [SEP] Who kills the sailor [SEP] What is
the story about [SEP] Where did the lifeboat sink [SEP] Which part of the novel
describes a conversation between Pi and two officials from the Japanese Ministry of
[SEP] How does the story end [SEP] How does the story end [SEP] Where is Pi adrift on
a lifeboat [SEP] Which part of the novel deseribes a conversation between Pi and two
officials from the Japanese Ministry of [SEP] Which one does Pi prefer [SEP] Where is
he adrift on a lifeboat

Figure 3: A generated question example for one answer passage in NQ-Train.

15

COMPSCI 572.01 Final Project Report

C RETRIEVER CODE EXAMPLES

C.1 DATALOADER ITERATOR

class MyDataset(Dataset):
def __init__(self, dataframe, p_tokenizer):
self.dataframe = dataframe
self .p_tokenizer = p_tokenizer

self .p_embed = p_tokenizer (
self.dataframe [’ passage_append’]. tolist (),
return_tensors="pt’,
truncation=True ,
max_length=512,
padding="max_length’
)

def __len__(self):
return len(self.dataframe)

def __getitem__(self, index):
return self.p_embed[index]

def collate_fn (batch):
batchsize = len(batch)

ctx_tensor = torch.LongTensor (
[[sample.ids, sample. attention_mask , sample.type_ids]
for sample in batch]

)

return ctx_tensor
BATCH_SIZE = 20

dataloader_train = torch.utils.data.DatalLoader(
MyDataset(dt_train_clean , ctx_tokenizer),
batch_size=BATCH_SIZE,
shuffle=False ,
collate_fn=collate_fn

)

16

COMPSCI 572.01 Final Project Report

C.2 CREATING A FAISS INDEX

res = faiss.StandardGpuResources ()
index = faiss.IndexFlatL2 (768)
gpu_index = faiss.index_cpu_to_gpu(res, 0, index)

class PassageEncoder(nn.Module):
def __init__(self, p_encoder, index):
super (). __init__ ()
self .p_encoder = p_encoder
self.index = index

def forward(self, passage):

self .index .add(
self.p_encoder (
passage[:, O, :],
passage[:, 1, :],
passage[:, 2, :]
). pooler_output.contiguous ()

)
pEncoder = PassageEncoder(ctx_model, gpu_index)

for i in tqdm.notebook.tqdm(
dataloader_train , total=len(dataloader_train)
):
pEncoder(i.to(”cuda”))
torch.cuda.empty_cache ()

17

	Introduction
	Related Work
	Classical Retrieval Methods
	Modern Retrieval Methods

	Approach
	Generalization
	Resource Intensive

	Experiments
	Datasets and EvaluationSee appendix A.1 for more detailed information
	Data Quality Issues
	Final Dataset Details

	Model and Training DetailsUnless explicitly stated, all analysis was conducted on the base Google Colab GPU
	Results
	Information Retrieval Accuracy

	Analysis
	Conclusion
	Database Information and SQL Scripts for Computation
	Dataset Information
	Duplicated BEIR Data
	Missing Answer Passages
	Final Dataset Details - Additional Concatenation Levels

	Model Details
	Question Generation Throughput
	Question Generator Modifications
	Question Generation Examples

	Retriever Code Examples
	DataLoader Iterator
	Creating a FAISS Index

